

[See all >](#)
56 References[See all >](#)
1 Figures[Download citation](#)[Share](#) ▾[Download full-text PDF](#)· March 2012 *with* 1,149 Reads

1

alter
t. John's University

Dianella G Howarth
28.11 · St. John's University

research

oers
ications
rojects

[hard Stalter](#) Author content
copyright.

[See all >](#)[56 References](#)[See all >](#)[1 Figures](#)[Download citation](#)[Share](#)[Download full-text PDF](#)

damage to a pine-oak forest, Brookhaven National Laboratory, 1961. Zones delineated by vertical lines (Iter and Kincaid 2009).

[Richard Stalter](#) Author content
Subject to copyright.

[Download full-text PDF](#)

Gamma Radiation

Richard Stalter and Dianella Howarth

*St. John's University
USA*

duction

tent of this chapter includes a brief history of gamma radiation, units of radiation measurement, ecological importance, tables including the half life of gamma emitting isotopes, comparative sensitivity of living organisms to gamma radiation, biological半衰期 of radioactive and nuclear materials, and brief descriptions of case studies of radiation accidents (Woodwell 1962), Stalter and Kincaid 2009), and nuclear power plant disasters (Three Mile Island 1979, Chernobyl 1986, Japan 2011).

radiation is somewhat similar to x-rays in that both pass through living materials also referred to as "photons" they travel at the speed of light. Gamma rays have enough energy to ionize matter and therefore can damage living cells. The damage done in the cell or tissue is proportional to the number of ionizing paths produced in the passing material. Isotopes of elements that are emitters are radionuclides important in products from nuclear testing, nuclear power plant disasters or waste.

rious affect of gamma rays depends on (1) their number (2) their energy and (3) their distance from the source of radiation. Radiation intensity decreases exponentially with increasing distance. Radiation damage on vascular plant species was demonstrated by Woodwell (1962) who subjected a mature pine-oak forest at Brookhaven National Laboratory to gamma radiation from a cesium 137 source (Figure 1).

radiation dose and damage to a pine-oak forest, Brookhaven National Laboratory, New York delineated by vertical lines (Woodwell 1962, Stalter and Kincaid 2009).

such damage to organisms is greatest when taken internally. Owing to this concept best, "the alpha beta gamma series is one of increasing penetration easing concentration of ionization and local damage." Alpha and beta radiation, gamma radiation, are corpuscular in nature. While alpha particles travel but a few meters, and can be stopped by a layer of dead skin, they are dangerous because they cause a large amount of local ionization which can cause mutations disrupting cell structures. Beta particles are high speed electrons. While much smaller than alpha particles, they are able to travel up to a couple of centimeters in living tissue, giving up their energy along their path. Beta particles, like alpha particles can damage tissue, and like alpha particles, can cause mutations that affect the functioning of cells.

History of gamma radiation as applied to biological systems

was familiar with the discovery of x-radiation by Roentgen in 1895 and the isolation of radium by the Curies in 1898 (Goodspeed and Uber 1939). Researchers soon learned that x-rays and radioactive substances such as radium produced similar effects on plant materials. Koernicke (1905) noted that cell division was delayed on x-ray and gamma treated cells. Both Koernicke (1905) and Gager (1907) described "striking chromosomal disruptions" after cells were dosed with x-rays or exposed to radium, a beta emitter. Gamma irradiated cells were also broken or fragmented by radiation treatment (Gager 1907, 1908). For additional historical work on radiation and plant genetics the reader is directed to a review article by Goodspeed and Uber (1939). Smith compiled a paper on the use of radiation in the production of useful mutations based on his presented in three symposia in the United States from August 1956 to January 1957. A more recent review article on ionizing radiation damage to plants was prepared by Klein (1971).

There are numerous studies applying gamma radiation to biological systems. Several publications involving botanicals follow. Nuttall et al (1961) found that yellow sweet onions exposed to 4000 or 8000 rad prevented sprouting in 97% of their experimental group suggesting that irradiation might be a viable method of prolonging the life of onions. This study, while intriguing, has not been generally accepted by a concerned with the problems of radiation. A second article by Heeney and Ward (1964) examined the effects of gamma radiation on the storage life of fresh strawberries. A dose of 330,000 rad prevented fungal development of the redcoat strawberry when stored at 40 degrees F for 26 days. The fugal free period was sharply reduced at higher radiation doses and/or at higher temperatures. Pritchard et al (1962) studied the effect of gamma radiation on the utilization of wheat straw by rumen microorganisms. They found that, "high levels of gamma radiation were needed to release nutrients trapped in straw needed by microbes. However, the levels of gamma irradiation necessary for release were well above what was practical for commercial purposes."

Everett et al (1955) investigated the use of gamma irradiation on male sterilization control of screw-worm flies in the southern United States while Bushland (1960) and (1967) and Lawson (1967) discussed this practice as a general way of controlling insect pests. Gambino and Lindberg (1964) examined the response of the pocket

vegetation in the southeastern United States while Monk (1966) published a similar study on the effects of short-term gamma radiation on an old field. Witherspoon (1965, 1969) studied radiation damage to a forest surrounding an unshielded fast reactor in 1965, and included this study with a report in 1969 on radiosensitivity of forest tree species to acute gamma radiation. Odum and Pigeon (1970) researched the effect of irradiation and of a tropical rain forest in Puerto Rico.

Units of measurement

Units, the gigabecquerel (GBq), gray (GY), and roentgen (R) are used to measure radioactivity. The GBq measures the number of gamma rays emitted from a source of radiation and is defined as 1.37×10^{-12} atomic decays each second. The unit of radioactivity that is defined as 1.37×10^{-12} atomic decays each second. The unit of the material comprising a GBq varies. One gram of radium is 37 GBq while 10-7th of newly formed radio-sodium is also 37 GBq since both release 3.7×10^{-10} atomic decays/second (Odum 1971). In dealing with biological systems, smaller units are also used such as the millicurie microcurie and picocurie which are 10^{-3} , 10^{-6} and 10^{-12} curies respectively.

The measurement of radiation is the GY. The absorbed dose of 1 GY means the absorption of 1 joule of radiation energy per kg of tissue. The third, the roentgen is nearly equivalent to the GY, and is used as a unit of measurement for exposure to gamma and x rays. The units of the total dose of radiation received by an organism. The dose rate is the rate of radiation received per unit time.

Biological importance of radionuclides

There are different kinds of atoms of each element; these are referred to as isotopes. Some are radioactive, some not. Radioactive isotopes are unstable. These decay into other isotopes by emitting radiation. Each radioactive isotope, radionuclide, have a specific rate of decay, its half life.

Naturally occurring nuclides are listed in Table 1 while those from fallout produced by fission of uranium and other nuclides are found in Table 2. Fission isotopes are produced from nuclear explosions which have in the most part been eliminated and from "controlled" reactions that produce nuclear energy. While most of the aforementioned nuclides are not essential for the growth of plants, they may be incorporated in biogeochemical cycles and become concentrated in certain elements, especially strontium and cesium. Thus Woodwell (1962) used cesium as a tracer radiation emitter in his well published study of an irradiated pine oak forest at the Brookhaven National Laboratory, Long Island, New York. More will be said about this later in this paper.

Sensitivity of organisms to radioactivity

There is a wide range of sensitivity of organisms to radioactivity. Mammals are most sensitive while bacteria are most resistant especially as spores. Moreover there is a wide tolerance to radiation during the life cycle of an organism. Radiation sickness in

can be caused by as little as 0.35 Gy while a dose of 6-8 Gy is lethal to nearly 100% individuals (Donnelly et al 2010). A dose of 2 Gy may kill some insect embryos while a 100 Gy is necessary to kill all adult individuals (Odum 1971). Dividing cells are more susceptible to radiation than resting cells. The toxicity of radionuclides depends on the absorption, distribution in the body, half-life, elimination half-time, type of radiation emitted, and their energy.

t	Half-Life	Radiations Emitted	
n-235 (²³⁵ U)	7×10^8 yrs.	Alpha ³	Gamma ⁰
t-226 (²²⁶ Ra)	1620 yrs.	Alpha ³	Gamma ⁰
im-40 (⁴⁰ K)	1.3×10^9 yrs.	Beta ²	Gamma ²
-14 (See Table 3.)			

Naturally occurring gamma emitting isotopes which contribute to background radiation (Odum 1971).

it	Half-Life	Radiations Emitted	
ium group	33 yrs.	Beta ²	Gamma
m-137 (¹³⁷ Cs) and daughter barium-137 (¹³⁷ Ba)	2.6 min	Beta	Gamma ¹
m-134 (¹³⁴ Cs)	2.3 yrs.	Beta ¹	Gamma ²
ium group	285 days	Beta ¹	Gamma ⁰
m-144 (¹⁴⁴ Ce) and daughter praseodymium-144	17 min.	Beta ²	Gamma ²
	33 days	Beta ¹	Gamma ¹
m-141 (¹⁴¹ Ce)	1 yr.	Beta ²	
hium group	30 sec.	Beta ³	Gamma ²
enium-106 (¹⁰⁶ Ru) and daughter rhodium-106 (¹⁰⁶ Rh)	40 days	Beta ¹	Gamma ¹
enium-103 (¹⁰³ Ru)	65 days	Beta ¹	Gamma ¹
nium-95 (⁹⁵ Zr) and daughter niobium-95 (⁹⁵ Nb)	35 days	Beta ⁰	Gamma ¹
nium-95 (⁹⁵ Nb)	12.8 days	Beta ¹	Gamma ¹
m-140 (¹⁴⁰ Ba) and daughter lanthanum-140 (¹⁴⁰ La)	40 hrs	Beta ²	Gamma ²
ymium-147 (¹⁴⁷ Nd) and daughter promethium-147 (¹⁴⁷ Pm)	11.3 days	Beta ¹	Gamma ¹
m-91 (⁹¹ Y)	2.6 yrs.	Beta ¹	Gamma
nium-239 (²³⁹ Pu)	61 days	Beta ²	Gamma ¹
e-131 (¹³¹ I)	2.4×10^4 yrs.	Alpha ³	Gamma ¹
ium-235 (²³⁵ U)	8 days	Beta ¹	Gamma ¹
	7×10^8 yrs.	Alpha ³	Gamma ⁰

Elements important in fission products entering the environment through fallout or dispersal.

(1962), Sparrow and Evans (1961), Sparrow and Woodwell (1962), and Sparrow et al. have demonstrated that sensitivity of ionizing radiation is directly proportional to the cell nucleus or chromosome volume. The larger the chromosome volume the more sensitive the material is to radiation. There are also differences in radiation tolerance between wild and laboratory rodent populations. Gambino and Lindberg (1964) and Golley (1965) have reported that the lethal dose for 50% of some wild rodent populations is twice that of laboratory white mice or white rats, likely due to the reduced variation in chromosome size.

Activity has been successfully used to sterilize certain male insect pests. Sterile males are released into natural populations in large numbers which mate with females. A female mates only once, and once mated with a sterile male produces no young. Introducing sterile male screw-worm flies in areas where they occur successfully reduced the population of screw-worm flies, a major pest in the southern United States. For those seeking general information on this topic see Baumhover et al (1955) Bushland (1960), (1967), Knippling (1960, 1964, 1965, 1967) and Lawson (1967).

Radiation effects on ecosystems

In the early 1960's there have been numerous studies on the effect of gamma radiation on ecosystems. These studies were fueled by the arms race between the Soviet Union and the United States (Stalter and Kincaid 2009). After lengthy negotiations between the two powers, the Strategic Arms Limitation Treaty (SALT) was signed in 1972 and extended in 1977. With the signing of the treaty, less funding for irradiation studies was available (Stalter and Kincaid 2009). Thus most studies cited in this paper are those conducted prior to the SALT extension of 1977. The gamma source that has been used has been either cesium 137 or cobalt 60. These include the studies of Woodwell (1962, 1965a) at Brookhaven National Laboratory, Long Island, New York, a tropical rain forest in Puerto Rico (Odum and Pigeon 1963) and the desert of Nevada (French 1965). Additional studies have been conducted in pine and forests of Georgia (Odum and Kuenzler 1963) (Platt 1965), and Oak Ridge, Tennessee (Witherspoon 1965, 1969). Much additional work involving a portable gamma source on plant communities has been conducted at the Savannah River Ecology Laboratory, South Carolina (McCormick and Platt 1962, McCormick and Golly 1966, Monk 1966, Knippling 1969).

Stalter and Kincaid (2009) investigated community development following gamma irradiation at a pine-oak forest, Brookhaven National Laboratory, Long Island, New York. The objective of this study was to compare vascular plant community change at five vegetation zones at the site of Woodwell's (1962) gamma irradiated forest (Figure 1). The zones were: the total kill zone where all vegetation was killed; a graminoid *Carex pensylvanica* zone; an *Pinus strobus* zone; an oak dominated zone; and a control, the original oak pine forest. Irradiation greater than 63,000 roentgens killed all vegetation. *Carex* dominated the zone receiving 27,000 to 63,000 roentgens, ericaceous shrubs, *Vaccinium* spp. and *Gaylussacia* were dominant at the zone receiving 11,000 to 27,000 roentgens while oaks survived in the zone receiving 3600 to 11,000 roentgens. Upon completion of the Woodwell study in the 1960's, pitch pine (*Pinus rigida*) has invaded the total kill zone as bare mineral soil favors its germination (Stalter and Kincaid 2009). *Carex* remained the dominant taxon in the

Gamma Radiation

Carex zone demonstrating again that different plant species vary in their tolerance ion.

ous plant communities may be more resistant to radiation than mature forests many early successional species have small nuclei (Sparrow and Evans 1961) and use herbaceous taxa like *Carex pensylvanica* have more below ground plant material shielded from gamma radiation. Sparrow (1962), Sparrow and Evans (1961), and et al (1963) present detailed information on the relationship between nuclear , chromosome numbers and relative radiosensitivity.

Biological magnification of radioactive material

ive material may become concentrated or "biologically magnified" during food transfer. Numerous biology and ecology text books include information on how living ns take up nutrients pesticides and radioactive material and concentrate them. this concept is well known, we direct the reader to several early studies involving entration of radioactive material (See the work of Foster and Rostenbach, 1954; and Kornberg 1956; Davis and Foster 1958). Ophel (1963) reported a concentration ium 90 in perch flesh as 5x that of lake water while that in perch bone was 3000x! al information on radioecological concentration can be found in Auberg and (1958), Auberg and Hungate (1967) and Polikarpov (1966).

Radioactive fallout

ive particles that fall to the earth after above ground nuclear tests and nuclear lant accidents are called radioactive fallout. Radioactive particles mix with the dust tmosphere and eventually fall to earth often thousands of miles from the initial n.

re two types of nuclear weapons, the fission bomb and fusion bomb or uclear weapon. In thermonuclear devices, deuterium fuses to form a heavier with the release of energy and neutrons. A fission bomb is needed to trigger the reaction. The thermonuclear weapon produces more neutrons which induce vity in the environment than a fission device per unit of energy released. Roughly ent of the energy of a nuclear weapon is in residual radiation which may become d in the atmosphere (Glasstone 1957). The amount of fallout produced depends on of weapon, size of the weapon and also on the amount of naturally occurring that is mixed with the radioactive material released in the explosion. Fallout and intensity depend upon the direction of the wind, speed and direction of the jet presence and amount of precipitation.

explosions carry radioactive material high in the atmosphere where the radioactive becomes fused with silica dust and other material present in the vicinity of the n. These particles are largely insoluble. The fallout particles may adhere to on where they enter food chains at the primary consumer level. Fallout from yl in 1986 was deposited in Lappland (Sweden) where caribou consumed nated vegetation. Shifting winds also carried Chernobyl radiation particles to Italy where rabbit growers fed their rabbits vegetation contaminated with

ive fallout from Chernobyl. Ultimately the rabbits were destroyed because of the concentration of radioactive material in their flesh.

re differences in the kind of radionuclides that enter terrestrial and marine food chains. Soluble fission products, strontium 90 and cesium 137, are generally found in the amounts in land plants and animals. In marine systems fallout that forms strong bonds with organic matter such as cobalt 60, iron 59, zinc 65, and manganese 54 are likely to be concentrated in marine organisms. In addition, those found in colloidal form such as cesium 134 and zirconium 95 are also found in high concentration in marine organisms. Cesium 134 is mostly from the fission products of a power reactor whereas cesium 137 can be formed during atomic power plant accidents or as a product of nuclear explosions.

re additional considerations/problems associated with concentrating radioactive elements entering food chains as the concentration of radioactivity is also a function of soil richness, and the exchange and storage capacity of soils. Nutrient poor soils and soils such as those found on granite outcrops act as a nutrient trap providing more radionuclides to the vegetation. For example, sheep grazing on hill pastures in England absorbed 20x as much strontium 90 in their bones than sheep pastured in deep valleys where the calcium content of the soil was higher and the grasses taller (Bryant et al 1957). For general radiological work on tracers in food chains and trophic levels see Odum and Odum (1963), Odum and Kuenzler (1963), de la Cruz (1963), Ball and Hooper (1963), Foster and Foster (1956).

ear power plant accidents

descriptions of three power plant accidents in the United States the Soviet Union and the Soviet Union. The first nuclear power plant accident occurred at 4 am on March 28, 1979, in Harrisburg, Pennsylvania, USA, the state's capital. A malfunction in the cooling system caused a portion of the core to melt in the Number 2 reactor. The approximately 200 people who lived near the plant had an average dose of 0.14 Gy (Rogovin 1980). Although some radioactive gas was released from the plant on the 29th and 30th of March, "not enough to cause any radiation dose above background levels in the vicinity of the accident" (<http://www.world-nuclear.org/info/info/info/inf36.html>). Luckily, there were no reported injuries or health issues emanating from the Three Mile Island accident.

serious nuclear accident occurred at the Chernobyl power plant located 80 miles from the city of Chernobyl in the Ukraine, one of the original Soviet Republics. A partial shutdown and test that began on the 25th of April, 1986, led to this disaster. At 1:23 am, 26 April, the reactor's power source dropped and when the backup system failed, the reactor, Reactor Four, exploded. Shortly after the initial explosion at 1:40 am, the Swedish government reported high levels of radiation at their Forsmark power plant at Stockholm. When additional European nuclear power plants also detected higher than normal levels of radiation, they contacted the USSR for an update. Although initially denying the nuclear disaster, on the 28th of April the USSR admitted that one of their reactors had been compromised.

Gamma Radiation

.. Naturally occurring isotopes which contribute to background radiation.

DE HALF-LIFE RADIATIONS EMITTED

ν -235 (^{235}U)	7×10^8 yrs.	Alpha ³	Gamma ⁰
ν -226 (^{226}Ra)	1620 yrs.	Alpha ³	Gamma ⁰
m-40 (^{40}K)	1.3×10^9 yrs.	Beta ²	Gamma ²
14 (^{14}C)	5568 yrs.	Beta ⁰	

.. low energy, less than 0.2 Mev; ¹ relatively low energy, 0.2-1 Mev; ² high energy, 1-3 Mev; ³ very high energy, over 3 Mev.

. Gamma emitting nuclides of elements which are essential constituents of organisms.

1 from Odum (1971).

DE HALF-LIFE RADIATIONS EMITTED

0 (^{60}Co)	5.27	yrs.	Beta ¹	Gamma ²
64 (^{64}Cu)		12.8	hrs.	Beta ¹
31 (^{131}I)		8	days	Beta ¹
^{59}Fe)	45	days	Beta ¹	Gamma ²
ese-54 (^{54}Mn)	300	days	Beta ²	Gamma ²
m-42 (^{42}K)	12.4	hrs.	Beta ³	Gamma ²
22 (^{22}Na)		2.6	yrs.	Beta ¹
24 (^{24}Na)		15.1	hrs.	Beta ²
^{65}Zn)	250	days	Beta ¹	Gamma ²

ium-140 (^{140}Ba), bromine-82 (^{82}Br), molybdenum-99 (^{99}Mo) and other trace

3.

.. Nuclides important in fission products entering the environment through fallout disposal.

DE HALF-LIFE RADIATIONS EMITTED

ntium group				
Strontium-90 (^{90}Sr) and daughter yttrium-90 (^{90}Y)	28	yrs.	Beta ¹	
	2.5	days	Beta ²	
Strontium-89 (^{89}Sr)	53	days	Beta ²	

ium group

Cesium-137 (^{137}Cs) and daughter barium-137 (^{137}Ba)	33	yrs.	Beta ²	Gamma
	2.6	min.	Beta	Gamma ¹

Cesium-134 (^{134}Cs)

ium group

Cerium-144 (^{144}Ce) and daughter praseodymium-144 (^{144}Pr)	285	days	Beta ¹	Gamma ⁰
	17	min.	Beta ²	Gamma ²

Cerium-141 (^{141}Ce)

enium group

Ruthenium-106 (^{106}Ru) and daughter rhodium-106 (^{106}Rh)	1	yr.	Beta ⁰	
	30	sec.	Beta ³	Gamma ²

Ruthenium-103 (^{103}Ru)

Zirconium-95 (^{95}Zr) and daughter niobium-95 (^{95}Nb)

Barium-140 (^{140}Ba) and daughter

lanthanum-140 (^{140}La)	40	hrs.	Beta ²	Gamma ²
Neodymium-147 (^{147}Nd) and	11.3	days	Beta ¹	Gamma ¹
daughter promethium-147 (^{147}Pm)	2.6	hrs.	Beta ¹	Gamma
Yttrium-91 (^{91}Y)	61	days	Beta ²	Gamma
Plutonium-239 (^{239}Pu)	2.4×10^4	hrs.	Alpha ³	Gamma ¹
131 (see Group B)				
m (see Group A)				

Radionuclides of Ecological Importance

s estimate that the radiation from the Chernobyl accident was 100x that of the two bombs dropped on Hiroshima and Nagasaki. It is estimated that the total heric release was 5200 PBq (petabecquerel, 10^{15} Bq). The immediate death toll was iduals though many more may die from the long term effects of radiation. The battal blazes at the Chernobyl power plant for two weeks. Those battling the fires roes in this author's eyes because they knew they were exposing themselves to us levels of radiation. Ultimately the Soviet authorities encased the Chernobyl n concrete. A second more stable sarcophagus is currently being constructed over nal; its scheduled completion date is 2013.

ay have been additional unreported nuclear power plant accidents in the Soviet Radioactive monitoring stations in Europe have picked up higher levels of radiation us times which may have been the result of other Soviet nuclear power plant s.

d and most recent nuclear power plant crisis occurred at the Fukushima Daiichi lant in Japan. The cause of this disaster was a severe earthquake and tsunami on the March, 2011. The earth quake, which registered approximately 9 on the Richter Scale, event that set this tragedy in motion. The earthquake and resulting tsunami l the power plant compromising the cooling systems to the reactors causing the fuel overheat. This disaster was rated greater than that at Three Mile Island. As of June e Fukushima disaster has released approximately one tenth the total amount of r as was released at Chernobyl. Unfortunately, the damaged Japanese reactor s to spew forth radiation so the ultimate amount of radiation released from the nnot be determined with certainty.

Acknowledgements

ors extend their thanks to the following individuals who assisted in the preparation chapter: Huizhong Xu, Associate professor of Physics, St. John's University, who l the physics section, to Natacha Lamarre, undergraduate biology major, St. John's ty, who typed the paper, prepared the tables and checked the references.

References

B., Hungate, F. P. (eds.). 1967. *Radioecological Concentration Processes*. Pergamon Press, Oxford. 1040 pp.

Gamma Radiation

h, S. I., and Crossley, D. A. 1958. Strontium-90 and cesium-137 uptake under natural conditions. Proc. Int. Conf. Peaceful Uses Atomic Energy, Geneva Paper No. 401.

z, and Hooper, F. F. 1963. Translocation of phosphorus in a trout stream ecosystem. In: *Radioecology* (V. Schultz and A. W. Klement, eds.). Reinhold Publishing Company, New York. pp. 217-228.

ver, A. H., Graham A. J., Hopkins, D. E., Dudley, F. H., New, W. D., and Bushland, R. C. 1955. Screw-worm control through release of sterilized flies. J. Econ. Entomol., 48:462-466.

J. J., Chamberlain, A. C., Morgan, A., and Spicer, C. S. 1957. Radiostrontium in soil, grass, milk and bone in U.K.; 1956 results. J. Nuc. En., 6:22-40.

d, R. C. 1960. Male sterilization for the control of insects. In.: *Advances in Pest Control Research* (R. L. Metcalf, ed.), Vol. III. John Wiley & Sons, Inc., New York.

uz, A. A., and Wiegert, R. G. 1967. 32-Phosphorus tracer studies of a horse weed aphid-ant food chain. Amer. Midl. Nat., 77:501-509.

o, L. K. 1967. Progress in insect control by irradiation induced sterility. Pans, 13:61-70.

J., and Foster, R. F. 1958. Bioaccumulation of radioisotopes through aquatic food chains. Ecology, 39:530-535.

y, E. H., Nemhauser, J. B., Smith, J. M., Kazzi, Z. N. Farfan, E. B., Chang, A. S., and Naeem, S. F. 2010. Acute radiation syndrome: assessment and management. Southern Medical Journal. 103(6):541-546.

l. F. 1958. Radioactive tracing of the movement of an essential element through an aquatic community with specific reference to radiophosphorus. Publ. della Stazione Zool. di Napoli.

l. F., Davis, J. J. 1956. The accumulation of radioactive substances in aquatic forms. Proc. Int. Conf. Peaceful Uses Atomic Energy, Geneva, 13:364-367.

l. F., and Rostenbach, R. E. 1954. Distribution of radioisotopes in the Columbian River. J. Amer. Water Works Assoc., 46:663-640.

N. R. 1965. Radiation and animal population: problems, progress and projections. Health Physics, 11:1557-1568.

l. S. 1907. Some effects of radioactivity on plants. Science 25:264.

l. S. 1908. Effects of the rays of radium on plants. Mem. N. Y. Bot. Gard. 4:1-278.

o, J. J., and Lindberg, R. G. 1964. Response of the pocket mouse to ionizing radiation. Read. Res., 22:586-597.

ie, S. 1957. *The Effects of Nuclear weapons*. U. S. Atomic Energy Commission, Washington, D. C.

J. B., Gentry, J. B., Menhinick, E., and Carmon, J. L. 1965. Response of wild rodents to acute gamma radiation. Rad. Res., 24:350-356.

eed, T. H., and Uber, F. M. 1939. Radiation and plant cytogenetics. Botanical Review 5(1):1-48.

W. C. and Kornberg, H. A. 1956. Radioactivity in terrestrial animals near an atomic energy site. Proc. Int. Conf. Peaceful Uses Atomic Energy, Geneva 13:385-388.

H. B., and Rutherford, W. M. 1964. Some effects of gamma radiation on the storage life of fresh strawberries. Canadian Journal of Plant Science 44:188-194.

o, R. E. 1966. *The Rumen and Its Microbes*. Academic Press, New York. 533 pp.

M., and Klein, D. T. 1971. Post-irradiation modulation of ionizing radiation damage to plants. *Botanical Review* 34(4):397-436.

✓, E. F. 1960. The eradication of the screwworm fly. *Scient. Amer.*, 203(4):54-61.

✓, E. F. 1963. The sterility principle. *Agr. Sci. Rev.*, 1(1):2.

✓, E. F. 1965. The sterility method of pest population control. In: *Research in Pesticides* (G. O. Chichester, ed.). Academic Press, New York. Pp. 233-249.

✓, E. F. 1967. Sterile technique, principles involved, current application, limitations and future applications. In: *Genetics of Insect Vectors of Disease* (Wright and Pal, eds.). Elsevier Publishing Co., Amsterdam. Pp. 587-616.

✓, M. 1905. Über die Wirkung von Rontgen- und Radiumstrahlen auf pflanzliche Gewebe und Zellen. *Ber. Deut. Bot. Ges.* 23:404-415.

F. R. 1967. Theory of control of insect population by sexually sterile males. *Ann. Entomol. Soc. Amer.*, 60:713-722.

✓, F. J. 1969. Effects of ionizing radiation on a pine forest. In: *2nd Nat. Sym. Radioecology* (D. Nelson and F. Evans, eds.). Clearinghouse Fed. Sci. Tech. Info., U. S. Dept. Commerce, Springfield, VA. Pp. 78-87.

✓, F. J., and Platt, R. B. 1962. Effects of ionizing radiation on a natural plant community. *Rad. Bot.*, 2:161-204.

✓, F. J., and Golley, F. B. 1966. Irradiation of natural vegetation—an experimental facility, procedures and dosimetry. *Health Physics*, 12:1467-1474.

✓. D. 1966. Effects of short-term gamma irradiation on an old field. *Rad. Bot.*, 6:329-335.

V. W.; Lyall, L. H.; and McQueen, K. F. 1961. Some effects of gamma radiation on stored onions. *Canadian Journal of Plant Science*, 41:805-813.

✓. P. 1971. *Fundamentals of Ecology*. W. B. Saunders Company, Philadelphia. Pp. 451-467.

✓. P. and Golley, F. B. 1963. Radioactive tracers as an aid to the measurement of energy flow at the population level in nature. In: *Radio ecology* (V. Shultz and A.W. Klement, eds.). Reinhold Publishing Company, New York. Pp. 403-410.

✓. P., and Kuenzler, E. J. 1963. Experimental isolation of food chains in an old field ecosystem with use of phosphorus-32. In: *Radio ecology* (V. Shultz and A.W. Klement, eds.). Reinhold Publishing Company, New York. pp. 113-120.

✓. T., and Pigeon, R.F. (eds.). 1970. A tropical rainforest. A study of irradiation and ecology at El Verde, Puerto Rico. Nat. Tech. Info. Service, Springfield, VA. 1678 pp.

✓. T., and Pigeon, R.F. 1965. Ionizing radiation and homeostasis of ecosystems. In: *Ecological Effects of Nuclear War* (Woodwell, ed.). Brookhaven National Laboratories, Publ. No. 917. Pp. 39-60.

✓. L. 1963. The fate of radiostrontium in a freshwater community. In: *Radioecology* (V. Shultz and W. Klement, eds.), Reinhold Publishing Company, New York. Pp. 213-216.

✓. B. 1965. Ionizing Radiation and homeostasis of ecosystems. In: *Ecological Effects of Nuclear War* (Woodwell, ed.) Brookhaven National Library, Publ. No. 917:39-60.

✓. G. C. 1966. Radioecology of aquatic organisms. (Translated from Russian by S. Technica and edited by Schultz and Klement).

[See all >](#)
56 References[See all >](#)
1 Figures[!\[\]\(2020723f97c3fe13d8ecf52b30807736_img.jpg\) Download citation](#)[Share !\[\]\(f024d36410e36011059c73f7d7908105_img.jpg\)](#)[Download full-text PDF](#)

Gamma Radiation

J, G. I., W. J. Pigden and D. J. Minson. 1962. Effect of gamma radiation on the utilization of wheat straw by rumen microorganisms. Canadian Journal of Animal Science 42:215-217.

, M. 1980. Three Mile Island: A report to the Commissioners and to the Public, Volume I. Nuclear Regulatory Commission, Special Inquiry Group.

I. H. 1958. Radiation in the production of useful mutations. Botanical Review 24(1): 1-24.

, A. H. 1962. The role of the cell nucleus in determining radiosensitivity. Brookhaven Lecture Series No. 17. Brookhaven Nat. Lab. Publ. No. 766.

, A. H., and Evans, H. J. 1961. Nuclear factors affecting radiosensitivity. 1. The influence of nuclear size and structure, chromosome complement and DNA content. In: *Fundamental Aspects of Radiosensitivity*. Brookhaven Nat. Lab. Pp. 76-100.

, A. H.; Shairer, L. A.; and Sparrow, R. C. 1963. Relationship between nuclear volumes, chromosome numbers, and relative radiosensitivity. Science, 141:163-166.

, A. H., and Woodwell, G. M. 1962. Prediction of the sensitivity of plants to chronic gamma irradiation. Rad. Bot., 2:9-26.

, and Kincaid, D. T. 2009. Community development following gamma radiation at a pine-oak forest, Brookhaven National Laboratory, Long Island, New York. American Journal of Botany 96(12):2206-2213.

poon, J. P. 1965. Radiation Damage to forest surrounding an unshielded fast reactor. Health Physics, 11:1637-1642.

poon, J. P. 1969. Radiosensitivity of forest tree species to acute fast neutron radiation. In: *Proc. 2nd Natl. Sym. Radioecology* (D. Nelson and F. Evans, eds.). Clearinghouse Fed. Sci. Tech. Info., Springfield VA. Pp. 120-126.

ell, G. M. 1962. Effects of ionizing radiation on terrestrial ecosystems. Science, 138:572-577.

ell, G. M. (ed.). 1965. *Ecological Effects of Nuclear War*. Brookhaven National Laboratory Publ. no. 917, 72 pp.

ell, G. M. 1965a. Effects of ionizing radiation on ecological systems. In: *Ecological Effects of Nuclear War* (Woodwell, ed.). Brookhaven National Laboratory Publ. no. 917. Pp. 20-38.

[See all >](#)
56 References[See all >](#)
1 Figures[Download citation](#)[Share](#)[Download full-text PDF](#)

ferences (56)

ion on terrestrial ecosystems

ciples involved, current application, limitations, and future application

m in a freshwater community

ion on a pine forest

omeostasis of ecosystems

radiation on the storage life of fresh strawberries

studies of a Horseweed-Aphid-Ant Food Chain

Richard G. Wiegert

Control of insects

Res

SIUM137 UPTAKE BY VEGETATION UNDER NATURAL CONDITIONS

Crossley

Isotopes through Aquatic Food Chains

[Show more](#)

Recommendations

[See all >](#)
56 References[See all >](#)
1 Figures[!\[\]\(dfc59eaff22f8544bedb238cca58d143_img.jpg\) Download citation](#)[Share !\[\]\(26388bf82a9d28864e0ddb284e508cab_img.jpg\)](#)[Download full-text PDF](#)

 Eric Nybo · Jacqueline Saunders · Dianella G Howarth · [...] · Vincent Ricigliano

[View project](#)

Project

Slime mold emergent computing / microfluidics

 Vincent Ricigliano · Dianella G Howarth · Brent A. Berger · [...] · Deleted Profile

[View project](#)

Project

Medicinal plant in vitro systems

 Vincent Ricigliano · Dianella G Howarth · Joe Chappell · [...] · B Hayes

[View project](#)

[See all >](#)
56 References[See all >](#)
1 Figures[Download citation](#)[Share](#)[Download full-text PDF](#)

• Vincent Ricigliano · • Dianella G Howarth · • Brent A. Berger · [...] · Jiahong Han

[View project](#)

Article

Calculation of Gamma-Ray Buildup Factors up to Depths of 100mfp by the Method of Invariant Embedding...

April 2004 · Journal of Nuclear Science and Technology

Akinao SHIMIZU · Takashi ONDA · Yukio SAKAMOTO

An improved data set of gamma-ray buildup factors for point isotropic sources in infinite homogeneous media has been generated by the method of invariant embedding. The points of improvement compared with the standard data set ANSI/ANS-6.4.3 include (1) extension of the buildup factors up to depths of 100 mean free paths, (2) improved treatment of bremsstrahlung, (3) addition of the effective ... [\[Show full abstract\]](#)

[Read more](#)

Article

Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse

January 2000 · Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

AA Solovyev · • V.A. Terekhin · • V. Tikhonchuk · • Larry Altgilbers

A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. ... [\[Show full abstract\]](#)

[Read more](#)

[See all >](#)
56 References[See all >](#)
1 Figures[!\[\]\(3b451835b5cf44dc087a11f8c88642da_img.jpg\) Download citation](#)[Share !\[\]\(0e60d2d9b679b4cf53dbe1e685ee345d_img.jpg\)](#)[Download full-text PDF](#)

April 1966 · Nuclear Physics

R. E. Struzynski · F. Pollock

The photon spectrum associated with the internal bremsstrahlung of the nucleus ^{35}S is computed. Relativistic Coulomb wave functions are used for the final states of the negaton. The Green function for the Dirac equation is computed using a potential based on a finite size nucleus of uniform charge density. The equivalence between the two methods of calculation originally proposed by Knipp and ... [\[Show full abstract\]](#)

[Read more](#)**Article** [Full-text available](#)Spectral signature of a free pulsar wind in the gamma-ray binaries LS 5039 and LSI $+61^\circ 303$

July 2008 · Astronomy and Astrophysics

Benoit Cerutti · G. Dubus · G. Henri

LS 5039 and LSI $+61^\circ 303$ are two binaries that have been detected in the TeV energy domain. These binaries are composed of a massive star and a compact object, possibly a young pulsar. The gamma-ray emission would be due to particle acceleration at the collision site between the relativistic pulsar wind and the stellar wind of the massive star. Part of the emission may also originate from ... [\[Show full abstract\]](#)

[View full-text](#)[Discover more](#)**About**[News](#)
[Company](#)
[Careers](#)**Support**[Help center](#)
[FAQ](#)**Business solutions**[Recruiting](#)
[Advertising](#)

